Grade 6 Math Circles
 Week of $20^{\text {th }}$ November
 Matrices

Exercise Solutions

1. Putting this in a matrix, we have $A=\left[\begin{array}{cc}6 & 10 \\ 10 & 7\end{array}\right]$
2. The dimensions, starting from the left, are $(2 \times 1),(2 \times 3),(3 \times 3)$, and (2×2)
3. Computing the matrix expressions, we have
(a) $\left[\begin{array}{ll}5 & 0 \\ 3 & 3\end{array}\right]$
(b) $\left[\begin{array}{cc}2 & 5 \\ 7 / 2 & -2\end{array}\right]$
(c) $\left[\begin{array}{ll}0 & 2 \\ 4 & 2\end{array}\right]$
4. Computing the matrix expression, we have
(a) $\left[\begin{array}{cc}20 & 5 \\ 20 & 10\end{array}\right]$
(b) $\left[\begin{array}{cc}6 & -15 \\ 21 / 2 & -6\end{array}\right]$
(c) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
5. Swapping the rows and columns, we have that the transpose of the following matrices
(a) $A^{T}=\left[\begin{array}{lll}1 & 2 & 0 \\ 1 & 3 & 1\end{array}\right]$
(b) $A^{T}=\left[\begin{array}{lll}2 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
(c) $A^{T}=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$
6. Using our formula for the area, we have that
(a) $p=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $q=\left[\begin{array}{l}2 \\ 1\end{array}\right] \Longrightarrow$ Area $=\left|\operatorname{det}\left(\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\right)\right|=3$ units 2
(b) $p=\left[\begin{array}{c}1 / 2 \\ 3\end{array}\right]$ and $q=\left[\begin{array}{l}1 \\ 0\end{array}\right] \Longrightarrow$ Area $=\left|\operatorname{det}\left(\left[\begin{array}{cc}1 / 2 & 1 \\ 3 & 0\end{array}\right]\right)\right|=3$ units 2
(c) $p=\left[\begin{array}{c}10 \\ 3\end{array}\right]$ and $q=\left[\begin{array}{c}-1 \\ 1 / 5\end{array}\right] \Longrightarrow$ Area $=\left|\operatorname{det}\left(\left[\begin{array}{cc}10 & -1 \\ 3 & 1 / 5\end{array}\right]\right)\right|=8$ units 2
(d) $p=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $q=\left[\begin{array}{l}0 \\ 1\end{array}\right] \Longrightarrow$ Area $=\left|\operatorname{det}\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)\right|=1$ units 2

Problem Set Solutions

1. We know that for matrix addition and subtraction, the matrix dimensions must be the same, so we have that
(a) $5 A$ is possible, and has dimension (2×2)
(b) $B+E^{T}$ is possible, and has dimension (2×3)
(c) $C+2 E$ is not possible
(d) $-3 A+D^{T}$ is possible, and has dimension (2×2)
(e) $A+4 B$ is not possible
2. Computing these matrix expressions, we have that
(a) $5 A-B^{T}=\left[\begin{array}{cc}0 & 17 \\ -10 & 14\end{array}\right]$
(b) $3 B+C=\left[\begin{array}{cc}19 & 31 \\ 11 & 4\end{array}\right]$
(c) $A+(B-2 C)=\left[\begin{array}{lc}-2 & 12 \\ -1 & 2\end{array}\right]$
(d) $B-(2 A+C)=\left[\begin{array}{cc}-1 & 1 \\ 1 & -6\end{array}\right]$
3. Given our formula for the Trace, we have that
(a) $\operatorname{Tr}(A)=2$
(b) $\operatorname{Tr}(A)=11$
(c) $\operatorname{Tr}(A)=61 / 6$
4. Given the formula for the determinant of the (3×3) matrix, we can compute the areas and find that
(a) Volume $=3$ units 3
(b) Volume $=14$ units 3
(c) Volume $=15$ units 3
5. We know the formula for the area of the parallelogram given these vectors, but if we follow it, we find that

$$
\left|\operatorname{det}\left(\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]\right)\right|=0
$$

It is equal to 0 because the two vectors are multiples of each other, that is $\left[\begin{array}{l}4 \\ 2\end{array}\right]=2\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Thus, they don't even form a parallelogram to begin with. They are in a straight line on top of one another.
6. Computing the following matrix multiplications we have that
(a) $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}4 & 2 \\ 8 & 4\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & 3 \\ -1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}4 & 3 \\ -1 & 0\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 0 & 3 \\ 2 & 1 & 1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 1 & 1 \\ 3 & 0\end{array}\right]=\left[\begin{array}{cc}11 & 0 \\ 8 & 1\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{lll}3 & 0 & 4 \\ 0 & 5 & 0\end{array}\right]=\left[\begin{array}{ccc}3 & 0 & 4 \\ 0 & 10 & 0\end{array}\right]$

You won't always get a square matrix, if you have two matrices, you can only multiply if the dimensions satisfy $(n \times m) \cdot(m \times k)$. The resulting matrix will have dimensions $(n \times k)$.
7. We know from the lesson the two matrices that rotate a vector by 90° and reflect across the line $y=x$. Thus, the resulting vector by rotating then reflecting is

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Doing this with reflection first, rotation second, we get that

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

So order does matter!

